Although talking about a trunk full of high-performance subwoofers powered by big amplifiers is fun, Sony knows that many people want a more cost-effective bass upgrade for their cars and trucks. On the heels of their entirely new Mobile ES amplifiers, source units, speakers and subwoofers, Sony has launched the latest iteration of the GS series speakers and subwoofers. This Product Spotlight will look at the 12-inch XS-W124GS and 10-inch XS-W104GS car audio subwoofers.
Features of the Sony XS-W124GS Subwoofer
The 12-inch (30-cm) XS-W124GS and 10-inch (25-cm) XS-W104GS subwoofers feature five-spoke, heavy-gauge stamped steel frames. Each spoke has an embossed element to add stiffness and rigidity. The frames also feature integrated vents below the spider mounting ledge. These vents allow heat to escape from the voice coil and motor assembly and prevent pressure from building up in the spider at high excursion levels. This design feature offers direct benefits regarding increased power handling, reduced power compression and improved linearity.
The motor assembly at the base of the chassis features a pair of ferrite magnets for good efficiency. The T-yoke has a cooling vent in the center, serving the same purposes as the vents in the frame. Heat can escape from the motor, and pressure won’t build up under the dust cap. The result is an additional reduction in thermal compression and reduced distortion at high volume levels.

Each subwoofer features a pair of progressive-rate spiders attached to the cone assembly to the basket. These spiders are a feature that Sony has brought from the Mobile ES drivers. The spiders provide the necessary cone control and compliance while keeping everything centered. Sony chose moderately stiff spiders to give the drivers a higher Qts value, which translates to improved output efficiency. Tinsel leads are sewn to the spider so they won’t hit the cone and cause unwanted noises at high output levels.

Sony GS Series Subwoofer Moving Components
Both GS series subwoofers feature a rigid paper cone bonded to the voice coil former. You can see in the cutaway image that the upper spider has a reinforcing collar at the base of the cone that strengthens the joint to the voice coil former and spider to improve reliability. A full-size parabolic dust cap made from injection-molded polypropylene attaches to the surround to form the cone assembly’s face. A rubber surround serves as the upper compliance for the woofer cone. Rubber lasts much longer than foam so these woofers will sound great in your car or truck for many years. A custom-tooled trim ring adorns the outer edge of the subwoofer to give it a tidy appearance.

XS-W124GS Physical Dimensions and Driver Specifications
The XS-W124GS subwoofer has an outside diameter of 13 1/8” (332 cm) and requires a mounting hole with a diameter of 11 1/8” (280 cm). The mounting depth is 5 3/4” (143.4 cm), but your installer will want to leave some room for the vent in the T-yoke. Sony rates the XS-W124GS as capable of handling 300 watts of power using the IEC 60286-5 standard and 420 watts using the ANSI/CTA-2031 standard. Peak power handling is 1,800 watts.
Regarding Thiele/Small parameters, the driver has a resonant frequency of 31.9 ohms, an equivalent compliance value (Vas) of 49.194 liters and a Total Q (Qts) of 0.724. As mentioned, the moderately high Q-value will help increase efficiency and output. Suggested enclosures are 0.91 cubic foot for a sealed design and 1.16 cubic feet tuned to 37 hertz for bass reflex applications. The graph below shows the predicted free-field response of the two enclosures, with the driver receiving 420 watts of power.

XS-W104GS Physical Dimensions and Driver Specifications
The 10-inch XS-W104GS has an outer diameter of 11 inches (279 mm), requires a mounting hole with a diameter of 9 1/4 inches (234 mm) and requires 5 1/8 inches (129.8 mm) of depth. Rated power handling is 300 watts continuous and 350 watts using the ANSI/CTA-2031 standard. Peak power handling is 1,500 watts.
The 10-inch subwoofer has an Fs of 30.9 hertz, an equivalence compliance of 36.47 liters and a Total Q of 0.505. By way of enclosures, Sony suggests an acoustic suspension design with a volume of 0.88 cubic foot or a bass reflex enclosure with a volume of 0.91 cubic foot tuned to 38 hertz. Given the similarity in suggested enclosure volumes, we’d go with the bass reflex design and enjoy the increased efficiency.
Sony backs the new 10- and 12-inch GS series subwoofers with a three-year warranty against manufacturing defects and workmanship issues. This generous warranty doesn’t mean you can hook one to a 1,000-watt amp or clip the daylights out of a 400-watt amp and melt the voice coil, then expect to get a new subwoofer.
Upgrade Your Car Audio System with Sony GS series Subwoofers
If you’re looking for an affordable, high-quality subwoofer from a company that stands behind its products, drop into a local authorized Sony car audio retailer today. Ask about the new GS series subwoofers like the XS-W124GS we looked at here. They can match the driver to an enclosure and suggest an amplifier that will perform great. Adding bass to your car stereo is one of the best upgrades you can make. With the Sony GS subwoofers, great sound doesn’t have to cost a small fortune. You can find an authorized Sony Car Audio retailer near you using their dealer locator tool. Also, follow Sony on Facebook to stay up-to-date with their latest product releases.
This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.


For several years, the Best Car Audio team has provided articles on the features, functions and benefits of all manner of
In its most basic of terms, electricity is a group of charged electrons that can be used to do work. The electricity in our cars comes from two sources: the battery and the alternator. After the battery is used to start the car, the alternator recharges the
It’s important to know the quantity of electricity moving through a circuit. We use the SI unit ampere to quantify the volume of electrons moving in a conductor. The original definition for the ampere involved quantification of the magnetic force created between two infinitely long parallel conductors (wires). While this is a valid definition, it’s never used in schools or any training. A simpler explanation is that 1 amp of current is equivalent to 6.2415093 × 10^18 elementary charges moving through a boundary over a period of one second. An elementary charge is the is the electric charge carried by a single proton.
Resistance is the description of the opposition to the flow of current in a circuit. We use the SI unit ohm to quantify this value. Unlike voltage and current, the symbol used to represent resistance is the uppercase Greek letter omega: Ω. More resistance in a circuit reduces the ability for electrons to flow and thereby decreases the number of amps flowing.
Thankfully, in simple circuits, the relationship between voltage, current and resistance is linear. When we have more voltage available, more current flows for a given resistance. Likewise, less resistance in a circuit causes more current to flow for a given voltage. Ohm’s law is a simple mathematical equation that allows you to calculate any of the three values, provided you know two others.
In any discussion about understanding
Sound is a vibration of air molecules that vibrates our eardrums. The eardrum passes these vibrations through to the middle ear through tiny bones called ossicles. The inner ear has a shape similar to that of a snail shell and contains microscopic hair cells that convert these vibrations into minute electrical signals. These signals are transmitted to the hearing nerve and subsequently to our brain. Each inner ear contains roughly 18,000 hair cells, all of which are said to fit on the head of a pin. Once a hair cell is damaged, it never grows back or repairs itself.
When discussing sound levels, the proper format is to use the unit dB SPL, dB(SPL) or dBSPL. The reference for any statement is the sound pressure as compared to 0dB. 0dB is defined as the perceived sound of a mosquito at a distance of 10 feet from the listener.
According to Guinness World Records, the quietest place in the world in 2012 was an anechoic test chamber at Orfield Laboratories in Minneapolis. The sound level in this room was measured at -13dBA. In October 2015, a team of engineers at the Microsoft head office in Redmond, Washington, smashed this record with measurements taken in the anechoic chamber in Building 87. A team of independent specialists measured a noise level of -20.35 dBA. The room is not only completely isolated from all sources of noise and vibration, but the walls are lined with large acoustic foam wedges design to absorb sound.
Many statements about sound levels get thrown around the industry. Let’s talk about and clarify a couple of the most common.
Just for fun and education, below is a series of test tones to demonstrate our ability to detect differences in amplitude. These tests are created to make the differences as easily perceivable as possible.
There is nothing worse than turning up your
When a mobile electronics specialist installs an amplifier in your vehicle, the
Perhaps the most dangerous control on an
If you have multiple
If your radio has an equalizer or simple bass and treble controls, turning them up will make different frequencies of your music louder relative to others. With that said, it won’t make a properly configured and tuned audio system play any louder. Just like the bass boost on an amp, equalizers and tone controls affect the signal level at specific frequencies.
All speakers and subwoofers have power ratings. In almost all cases, this rating is the amount of power that the speaker can manage from a thermal standpoint. You see, speakers are notoriously inefficient. More than 95 percent of the energy fed into a speaker is converted to heat. If you feed a woofer 100 watts of power, 95 watts go into heating the voice coil and motor assembly and less than 5 watts are converted into acoustic energy.
Another consideration about amplifiers is that most can produce 150 percent to 200 percent of their rated power as extra energy when pushed into clipping or distortion. So, a 50-watt amplifier can easily produce 75 watts of distorted power and still damage that 70-watt speaker.





