Auto Acoustics

Car Stereo and Window Tint

(919) 493-5473 (336) 585-0188
  • Home
  • Services
    • ATV/UTV Upgrades
    • Car Audio
    • Driver Safety
    • Jeep Accessories
    • Marine Audio and Lighting
    • Motorcycle Audio
    • Remote Starters
    • Truck Accessories
    • Window Tint
  • About Us
  • Location
  • Customer Reviews
    • Durham Store
    • Burlington Store
  • Contact Us
  • Work For Us
  • Facebook
  • Instagram

Vehicle Lighting Upgrades Offer Many Options

LightingWhen it comes to driving in the dark, the quality and quantity of lighting you have is paramount to your safety, and the safety of those around you. In recent years, automakers have begun to put significant effort into their lighting systems. From the days of incandescent lighting to upgrades with halogen gases, high-intensity discharge (HID), light-emitting diodes (LEDs) and – most recently – lasers, lighting has come a long way. The aftermarket is evolving quickly as well, so let’s look at some of the options that can make your nighttime drive safer.

Light Source Options

Factory headlight replacement options are the most popular upgrades available. There are three basic options: incandescent, LED and HID. Incandescent bulbs use a high-temperature filament that glows white-hot when current passes through it. Advances in materials and the selection of gases that are used in the construction of the light bulb have improved efficiency and longevity, as well as increased light output. A few years ago, tinted incandescent bulbs were popular – they gave the white/blue appearance of high-dollar HID kits. However, any time you put something between the light source and what you are trying to illuminate, you decrease the light output. Cool? Yes. Bright? Not so much.

LightingThe latest rage is LED lights. Vehicles like the Toyota Corolla, Acura MDX and new Honda Civic are available with LED headlights. These light sources are very bright. They produce full output very quickly when turned on. In the aftermarket, LED replacement headlight bulbs are becoming more and more popular. The quality of LEDs available is increasing in tandem with demand. However, the light output (measured in lumens) is still a little behind that of HID bulbs. LED lights often cost more, because not as many are being produced – a supply-and-demand issue. LED lights also require external cooling. Aluminum heat sinks, braided metal tabs and fans are common solutions for helping to dissipate the heat generated by LEDs. These can pose challenges regarding installation and available space.

The 1996 Lincoln Mark VIII is credited as being the first production vehicle with HID headlights. This system works by increasing the 12V vehicle electrical system voltage up to around 100 volts. This voltage goes to a pair of electrodes in a gas-filled chamber. A steady spark between the two electrodes is what produces the light. However, it takes around 25,000 volts to get the lights to start working. That’s why you get a small, bright flash when you first turn on an HID system. HID lights are among the brightest on the market. The color of the light they produce is closer to that of sunlight, with more blue content than with incandescent bulbs.

Light Color

Lighting
Image courtesy of Vleds.com

We should talk about light color, or more accurately, light temperature is rated on the Kelvin scale. Lower numbers, around 3,500–4,500 K have significant yellow and orange content, and are similar to incandescent bulbs. Moving up the scale, 4,500–6,000 K is bluer and closer to sunlight. That said, as the blue content increases, so can the propensity for eye fatigue – blue light can be tiring to look at. You don’t want to go too high for daily use. Bulbs rated at 6,000–10,000 K are for appearance purposes only. The light becomes more purple toward the high-end of the spectrum. These are fine for a show car, but not practical or safe for daily use.

Light Intensity

Many people believe there is a direct correlation between color temperature and light output. That depends, of course, on the manufacturer of the bulb. The thinking is that lower temperatures produce more light output. Ultimately, the amount of light that is produced will determine how much and how far you can see.

Light output is measured in lumens. More lumens means more brightness, which, for a given beam pattern, means that the road will be illuminated better.

Beam Pattern

LightingWhen upgrading your headlights, it is critically important that you are conscious of the resulting beam pattern. The light that is emitted from the front your vehicle is in a specific pattern – not round like a flashlight. The beam has a flat line through it, ever so slightly below horizontal. This allows the light to illuminate the road without blinding oncoming drivers. The light should also be brighter near the edge of this cutoff, putting more light down the road rather than in front of the vehicle. Too much light in the foreground will cause your pupils to close slightly, reducing how far down the road you can see.

Likewise – and this is a great night driving tip – the brightness of the vehicle interior can have the same effect. Keep the dash and radio illumination as dim as possible. That can help you see further down the road.

If the new light bulbs you install change the beam pattern, remove them. They are not compatible with your headlights, and they will blind oncoming drivers. This is extremely dangerous and can cause accidents.

Headlight Styles

There are two types of factory headlight assemblies in use today: reflector style and projector style.

The projectors are fairly easy to recognize – they have smallish, 2–3” round lenses. Reflectors have a large, molded, mirror-finish bowl behind the light. While one is not necessarily better than the other, you do need to know which you have when you go shopping for upgrades. Aftermarket HID kits don’t typically work properly in reflector-style headlight assemblies. The beam pattern becomes uncontrolled, pointing light into the eyes of oncoming drivers. In many cases, depending on the specific design of the kit you choose, you can use an LED upgrade in those applications.

In projector-style systems, the shape of the internal reflector is designed to work with either incandescent or HID style bulbs. The position and shape of the light source differs between these two bulb types. You can often get away with putting HID bulb kits in a projector designed for Incandescent bulbs without any detrimental effects, but they may not be quite as bright or focused as an HID bulb in a projector designed specifically for that application.

Retrofits

If you are looking for the ultimate lighting upgrade, you may want to contact your local mobile electronics specialist about a retrofit. A retrofit involves removing the headlights from the vehicle, taking them apart, and installing new projectors with OEM-quality bulbs and ballasts. Most of these solutions use what is known as a bi-xenon projector. These projector assemblies have motorized shutters that move to produce a “high beam” light pattern. The output of these systems is among the best there is – perfect beam pattern, excellent cutoff and great light output. Some headlights are easier to work on than others, so contact a local specialist for details about your lights.

You can also make some cosmetic changes while the lights are apart. The installation of LED halo rings, and painting some of the interior components can have a dramatic effect on the look of the vehicle.

Wiring

LightingWhen you want to change headlights, wiring is often involved. Many new vehicles have systems in place to detect when a bulb is burnt out. They can also modulate the voltage to high-beam lighting circuits to operate them as daytime running lights.

When it comes to wiring, nobody is better than your local car audio specialist retailer. Work with them to ensure that your new light wiring can provide enough current and operates the way it should. Relays, capacitors and load resistors may be required to achieve the results you want. Don’t ever skimp on wiring – it affects the reliability of the lights you install, and your safety is at risk.

A Word of Caution About Vehicle Lighting Upgrades

We want to remind you that your headlights are a tool. They are not toys, and their performance and reliability are of the utmost importance to your safety and the safety of those you share the road with. Lighting upgrades are a great way to improve your safety at night. Drop by your local mobile electronics specialist and discuss your options.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Lighting, RESOURCE LIBRARY

Choosing Speakers For Your Car: Components Or Coaxials?

Choosing SpeakersDeveloping a speaker requires that the designer and engineer balance many different aspects, such as the application, cost and desired performance level of the end product. For the consumer, navigating the thousands of different speaker offerings on the market can be difficult. Two speakers can measure similarly regarding efficiency, power handling and frequency response, but still perform completely differently because of different distortion characteristics. Cone, dust cap and suspension resonance, motor non-linearity, and enclosure/application requirements play a crucial role in determining how the end-product will sound once installed in the listening environment. This article scratches the surface of looking at the benefits and drawbacks of choosing speakers by comparing coaxial and component speaker designs.

When Choosing Speakers, Define the Design

Choosing SpeakersComponent (or separate) speakers are a set of speakers that includes a set of dedicated midrange drivers and dedicated tweeters. Each of those four speakers requires a dedicated mounting location. By contrast, a coaxial speaker features a midrange driver with a tweeter mounted in the center of it. In most cases, the tweeter is on top of an extension post connected to the pole piece. Other coaxial designs use a bridge or mesh grille to suspend the tweeter over the midrange. These are sometimes called coaxially mounted components by marketing departments.

Benefits of Coaxial Speakers

In most cases, coaxial speakers are the less-expensive options in a product lineup. This pricing is due to the chosen target customer and not because you can’t make a high-quality coaxial speaker. Less-expensive magnets, baskets, cone materials and suspension components, and wider tolerances that allow for faster production with fewer rejected assemblies, all help reduce cost. The benefit is, if you need an inexpensive speaker, coaxials are a good solution.

Coaxial speakers can be installed faster, so they are less expensive to install. The integrated tweeter saves a lot of time during the installation process. Most coaxial speakers have integrated crossovers of some sort that don’t require special wiring or mounting. The net result is that your installer can get them up and running in your vehicle in about half the time it takes to install a component set, which means your labor charges will be reduced.

Benefits of Component Speakers

Most component speakers are made from better materials and have higher performance goals. High-end components can cost more than $5,000 for a set and often include premium passive crossover networks, elaborate installation accessories and – of course – amazing speakers. The sound that component speakers produce, when installed and tuned properly, can be amazing!

When a good set of components is tuned properly, most of the sound can appear to come from the tweeters. Having a separate tweeter allows your installer to mount it high in the vehicle – at the top of the door, on the dash or in the A-pillar. The combination of proper tuning and placement puts the music out in front of you, essentially at eye level. This higher soundstage is similar to what you would experience at a concert, listening to the band performing in front of you.

Choosing SpeakersMany factors contribute to where and how your installer mounts the tweeters – your budget, your performance goals, and how much modification you want or will allow to your vehicle. All locations have their benefits and drawbacks. For example, a tweeter mounted on the dash or A-pillar is very near the windshield. The hard surface of the windshield can cause significant reflections. Alternatively, a mounting location in the upper section of the door may reduce these reflections, but may not raise the soundstage as high, or could make it appear to come from somewhere closer to you than the dash or pillar location.

A component speaker doesn’t have any of its output blocked by the tweeter, which eliminates some minor reflections . Likewise, with a coaxial speaker that uses a tweeter post, a component speaker can have a full dust cap. The dust cap moves with the cone and increases the driver cone area. Additional cone area increases the driver’s efficiency.

The Huge Role of Crossovers

Choosing SpeakersWhether you choose a coaxial or component speaker set, you are going to need a crossover to handle splitting up the frequencies. In the most basic of speakers, a capacitor is used on the wire going to the tweeter to block low and midrange information. The midrange driver is allowed to roll off naturally – ideally, there are no significant high frequencies resonances that will affect the sound.

As you progress up through the quality of a speaker set, you will see steeper filter networks on tweeters. These steeper networks allow the tweeter to play to a lower frequency and then be stopped to protect it from excursion damage. At the same time, filtering the high-frequency output of the midrange is common in mid- to high-end crossover networks. Speaker manufacturers construct the most elaborate of crossover networks with premium components for both the high- and low-pass portions of the network. Adjustability is often built into the crossover for tweeter level. Small components can be overdriven and saturated, reducing their effectiveness. Large amounts of distortion can cause the tweeter cap to overload and explode.

The Option of Coincident-mounted Coaxial Speakers

Choosing SpeakersThe radiation pattern of a speaker is a sphere in its standard operating range. As frequency increases, this output pattern becomes more directional. When a tweeter is mounted at the base of a midrange, a phenomenon occurs called Intermodulation Distortion. As the cone of the midrange moves up and down to reproduce music, this moving surface modulates the reflections of the tweeter.

It is worth noting that the same thing happens when a single speaker cone is asked to reproduce high frequencies: The source of the high-frequency sounds moves forward and rearward as the speaker cone attempts to reproduce lower frequencies. This modulating effect is known as Doppler Distortion. These distortions, combined with the narrowing of the radiation pattern as frequency increases, are some of the many reasons why we have to use different-sized speakers to reproduce music accurately.

When shopping for a coaxial speaker, you will want to choose one that has the tweeter mounted low enough not to interfere with the installation of a grille or trim panel over top of the speaker. You should also look for a tweeter that has a small waveguide that prevents the output from bouncing off the midrange cone.

Shopping for Speakers

We could spend years discussing the different aspects of speaker design and performance. Suffice it to say that you should seek out the assistance of a seasoned and reputable professional for purchase and installation. Be sure to quantify as much of the purchase process as possible – your financial limits, cosmetic preferences regarding installation and performance goals for the system. You will want to use music you have listened to many times when auditioning speakers.

You may want to listen to both a set of more- and less-expensive speakers to help quantify the price point you have chosen. Finally, talk with the salesperson and, if possible, the installer about how and where the speakers will be installed. Be sure to ask about sound deadening, spacers, wiring and anything else that can affect the performance of the installed speaker.

Speaker shopping is a lot of fun, and getting new speakers for your car, truck, boat or motorcycle can be very exciting. Be patient – take your time and be thorough. You will enjoy your new purchase all that much more when you choose a great-sounding speaker and a skilled installer.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

The Importance Of Proper Car Audio Speaker Installation

Speaker InstallationThe speakers in your mobile entertainment system are one of the most critical components in determining how your system sounds. If you choose poorly designed speakers that have distortion issues from poor cone, suspension or motor design, no amount of signal processing can make your system sound great. The methods used to install your speakers are as important as the design of the speakers themselves. In this article, we are going to look into some of the common mistakes that occur during speaker installation and how to maximize the performance of your speakers.

Speakers Need A Stable Foundation

Speaker InstallationIf you want to listen to a record player, you want the unit to be on a solid table or stand. You’d never try to hold the turntable on your lap – the needle would jump and bound all over the place. When it comes to speakers, you want all the energy from the motor to move the speaker cone and not the basket. Why would the basket move? Newton’s Third Law of Motion states: When one body exerts a force on a second body, the second body simultaneously exerts a force equal in magnitude and opposite in direction on the first body.

When the voice coil pushes the speaker cone out, the inertia of the cone is also pushing back on the fixed magnet. If the speaker isn’t mounted securely, it will buzz, vibrate and otherwise move around. These vibrations cause all manner of distortion.

Look at a set of high-end home audio speakers. Years ago, Linn had a set of narrow floor-standing speakers that used a pair of small midrange drivers, roughly 4.5 inches in diameter. The front baffle of the speaker enclosure was 1.5-inch thick MDF. If you knocked on it with your knuckles, it sounded like concrete. And yes, those speakers sounded excellent!

Speaker Installation – Consider Mass

To combat the forces generated by the moving speaker cone, you will want to consider beefing up the mounting surface. In the case of a subwoofer enclosure, an extra-thick front panel can help. Vertical braces on either side of the speaker mounting surface help even more. The best solution is to run full-size braces from the front of the enclosure to the rear. Full depth braces lock the front and rear panels together and add dramatic strength to the speaker mounting surface. These braces also control vibrations in the rear panel to improve performance further.

For a smaller speaker such as midrange or midbass driver in a door, adding strength is a little more difficult. The most common practice is to add a layer or two of butyl damping material (sound deadening) to the metal around the speaker. You can even add a layer or two on the inside of the door skin if you are concerned about thickness. Damping materials with an aluminum layer add a little extra mass.

Speaker Installation
These plastic speaker adapters by the crew at Mobile Edge will last the life of the vehicle.

If your installer is constructing a set of speaker mounting adapters, then ask if they are using a material that has some mass to it. HDPE and ABS are good; acrylic is even better. A material like Corian – the DuPont countertop material – is fantastic. You can easily cut and shape Corian and glue parts together with Cyanoacrylate (Crazy Glue). You may want to use thread inserts or t-nuts with all of these materials. While it is readily available and easy to work with, don’t use wood for speaker adapters inside doors – it will get wet, swell up and deform. It can also hold water and get moldy.

Speaker Installation – Location Matters

Speaker Installation
This enclosure, by Handcrafted Car Audio is perfect for maximizing the bass output without taking up any usable hatch space.

If your audio system is going to use factory speaker locations, most of the time these are acceptable to provide an unobstructed output path to the listening area. The last thing you want to do is block the output of the speaker by putting something in front of it. Keep magazines, books, paper and other objects from piling up in front of, or on top of, your speakers.

For subwoofers, the location of the sub has a dramatic effect on how it sounds. You want the energy from the subwoofer to be able to mix with the sound from your midbass speakers as easily as possible. For this reason, hatchbacks and SUVs are great for bass. If you have a sedan, then firing the output of your subwoofer through a ski pass-through works well. You can get away with firing subs into the trunk of a sedan, but you will want to ensure that your midbass drivers can play fairly low – say 75 Hertz or so – to ensure that you don’t lose impact and dynamics.

Back-Wave Cancellation Problems

We use speaker enclosures for two primary reasons – to limit the movement of the speaker cone and to prevent the sound coming from the rear of the speaker cone from canceling out the sound coming from the front. You need to prevent the rearward sound from mixing with the front. For midrange speakers, this means building good quality mounting adapters. Your installer can also use sound-deadening materials to seal up openings in the interior skin of your door panels. You will get better speaker performance with proper back-wave management than you will just buying better speakers.

Weather Protection Ensures Longevity

Speaker Installation
In another Handcrafted Car Audio installation, they were fortunate enough to have room to build a sealed enclosure for these midrange speakers.

When mounting speakers in a door panel, it is inevitable that the back of the speaker will get wet. The interior of doors are not completely watertight, and this poses a challenge for installers. Creating an enclosure out of a water-resistant material would be the perfect option, but there is rarely enough mounting depth and it is difficult to create an enclosure that is large enough not to affect the performance of the speaker. For many years, installers have used foam ‘hats,’ cut in half to protect the top of the speaker from direct exposure to drops from the window seal. These are a good option. A thick foam gasket mounted behind the speaker mounting surface can also help. Companies like SoundSkins and F.A.S.T. Rings have ready to apply pre-cut solutions.

There are dozens of other considerations when it comes to having your speakers installed. The most important task for you is to partner with a retailer that does high-quality work and has an excellent reputation. Choosing great speakers for your car audio system is a lot of fun. Hearing them perform up to their potential is even better.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

The Many Benefits of Installing Window Film on Your Vehicle

Window TintingAutomotive window film has been around for more than 50 years. What started as a spray-on process to add privacy has evolved dramatically over the past few decades. Modern window films offer amazing optical clarity, excellent heat rejection, reduced glare and improved occupant protection. Let’s look at what this technology is and some of the reasons why people tint their windows.

What Is Window Film?

Most window films are made from a thin polyester sheet with layers of a proprietary mixture of coatings. These coating materials offer UV-, IR- and light-blocking properties. Window films are applied directly to the inside surface of the glass and include an adhesive to ensure they stay in place. High-quality films are designed not to fade or change color over their lives. These quality adhesives will not break down and cause the film to release over time.

Window Film and Light Transmission

The typical facility that sells and installs window film may carry as many as four of five different grades of film. Each grade often has several different light transmission levels available. Films are rated by the percentage of visible light that they allow to pass. A 15 percent film only lets 15% of the light directed at the film pass through. A 5% film would be very dark, while a 70% film is very light.

Why Use Window Film?

There are four main reasons to use window film or tint on your vehicle:

  • Improve styling
  • Security
  • Heat rejection
  • Protection against UV rays

Style

Window TintingThere is no doubt that a vehicle with professionally installed window tint looks cool. A white car with a dark tint evokes the “stormtrooper” look, while a dark paint color with tinted windows and no chrome is an amazing “blacked out” style. Whatever your preference, tinting your windows can have a dramatic effect on the style of your vehicle.

Safety

Windows films that protect the vehicle and its occupants are steadily growing in popularity. There are security films designed specifically to adhere firmly to the tempered glass of side and rear windows. These films keep the window intact in an accident or an attempted “break and enter.” If you are concerned about attempted break-ins, ask your local window tint specialist about security films.

Heat Rejection

Window Tinting
A heat lamp display, such as this one at Window Tint School allows you to not only see the difference in the light transmission, but also feel the heat reduction.

One of the most popular reasons to tint your windows is to help keep the interior of your vehicle cool. The key to succeeding at this goal is to request a good-quality window film. These thermal blocking films are often called “nano” or “ceramic.”

Think about just how much glass there is in the average vehicle. What does your steering wheel feel like when you get in the car on a hot summer day? In most cases, you can barely touch it! Premium films are designed to block heat, not just light. They not only help keep your car cooler, but they ease the load on your air conditioning system. That can directly translate into savings in fuel costs.

When it comes to blocking heat, the amount of light the film transmits is not the only criterion. Many shops will have a way to demonstrate the capabilities of heat-blocking films, often using a heat lamp display of some sort. There are 5% films that use dyes that barely block any heat. At the other end of the spectrum, there are films that allow more than 70% of light to pass, but block 50% of the heat from the sun.

Skin Protection

Window TintingThe Skin Cancer Foundation has released an article about the benefits of window films that are designed to block UV rays. UVA and UVB rays are what cause sunburns and eye damage. Conventional glass blocks the transmission of UVB radiation, but UVA rays can pass through effectively unhindered. These protective films can block up to 97% of UVA rays. Unlike traditional films, many of these UV-blocking films offer excellent light transmission characteristics. As much as 93% of visible light can be transmitted, making them suitable for use on windshields in some areas. The best of these films offer an equivalent Sun Protection Factor (SPF) of up to 1,000. If you spend a lot of time in your vehicle, then you should look into UV-blocking films.

We have all seen pictures of cracked vinyl dashboards in our favorite ’70s and ’80s cars. The same window film protection characteristics that protect you also protect your vehicle. Plastic, vinyl, rubber and cloth are all susceptible to damage and fading caused by UV exposure. A quality window film keeps your car interior not only cool, but looking great for years.

Film Installation

Window TintingIt is best to seek out a professional installer to have window film installed. They are trained in techniques to ensure that the film is cut and shrunk to fit the glass perfectly. The difference between a do-it-yourself job and a professional installation extends far beyond the initial result. Proper installation techniques ensure that no fingerprints, dust or debris get caught under the film. A proper installation will last longer because it adheres to the glass better. The film won’t peel or pull away from the edges or defroster lines.

If you are interested in having your windows tinted, check with your local tinting professionals. Ask to see examples of their work, and be sure to discuss different qualities of film and ask about their thermal, UV and light transmission capabilities. Modern window films are amazing feats of engineering that can protect you and your vehicle while making it look awesome.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, RESOURCE LIBRARY, Window Tint

Digital Signal Processors Take Your Audio System To The Next Level

Digital Signal ProcessorsAdjusting or modifying audio signals is nothing new. Analog signal processors have been around recording studios and live performances for decades. Everything from equalizers to crossovers and compressors were conceived back when vacuum tubes were popular. As technology advanced, the size, cost and complexity of signal processors decreased. Now, many car audio source units contain more processing power than early recording studios. This article looks at digital signal processors (DSPs), what they do and why you need them.

A Hostile Environment

Digital Signal ProcessorsIf we were to take a full-range home speaker into an open field and measure the frequency response, we’d see a fairly flat and smooth response curve. If you take that same speaker into a small room and measure the response again, you will see peaks and dips at various frequencies. This change in frequency response is not caused by the speaker, but by the room itself. Reflections cause nodes and anti-nodes (peaks and valleys) that dramatically affect the perceived frequency response of the speaker system. To maximize our enjoyment of that speaker, we need to apply signal correction to the speaker so what we hear is similar to what we would have experienced in that field.

In a car, we are very rarely able to sit directly in the middle of the left and right speakers. The driver is usually twice as far from the right speaker as from the left. We hear the output of the left speaker first and it seems as if that speaker appears to be playing louder – because it is closer. Keep this in mind as we discuss digital signal processors (DSPs).

Speaker Limitations

No single speaker can reproduce the entire audio spectrum from 20 Hz to 20 kHz with accuracy, detail and even dispersion of sound. Even if there were one that could do this, the distortion levels in the midrange and high-frequency sounds would still be high because of the excursion requirements of the speaker at low frequencies. Because of this, we make use of several different speakers to cover the audio band. Woofers or subwoofers cover the bass, and typically play up to 80 or 100 hertz. Midrange drivers cover the range from 100 Hz to around 4,000 Hz. Finally, we use tweeters to cover the remainder of the frequencies above 4,000 Hz. While these are approximations, they are common crossover points for these speakers.

A crossover is a device that limits the passing of audio signals. There are two common types used in car audio: high-pass and low-pass. Their name describes their function. A high-pass crossover allows frequencies higher than the crossover point to pass through, and a low-pass allows frequencies below the crossover point to pass. A high-pass crossover would be used to keep the deep bass out of a small door or dash speaker, while a low-pass crossover is used to keep midrange and high-frequency information out of a subwoofer. We can combine both kinds of crossovers to produce what is known as a bandpass crossover – we limited the low- and high-frequency information. We would use this on a midrange speaker when combining it with a woofer and a tweeter. (We will discuss crossovers in detail in another article.)

Digital Signal ProcessorsIn car audio, we use both active and passive crossovers. Passive crossovers are a combination of capacitors, resistors and inductors that we connect to the speaker wires between the amp and the speaker. The behavior of the components, and how they are configured, limits what frequencies are allowed to pass through to the speaker.

An active crossover is an electronic device that affects the frequency response of the signal before the amplifier. The benefit of active crossovers is that it is easy to adjust them to different frequencies. Most, if not all, crossover components have to be replaced to adjust the crossover frequency of a passive network.

This information gives us a basic understanding of why we need signal processing. For decades, the mobile electronics industry survived and thrived using analog processing. Companies like AudioControl, Phoenix Gold, Rockford Fosgate and Zapco made equalizers and crossovers, and enthusiasts flocked to them like moths to a flame.

As computing power advanced, we saw products like the Rockford Symmetry appear. The Symmetry was an electronically controlled analog processor – a fantastic creation that allowed users to make many adjustments from a single computerized control panel.

The next evolution in signal processing was to do everything in the digital domain, instead of analog. How does that work?

Building Blocks

A DSP is a powerful audio signal processor with hardware and software that is optimized to perform high-speed processing in real time. Some of the less-expensive processors include the analog-to-digital and digital-to-analog converters within the chip itself. On the higher-end units, the analog converters are external components. Better D/A converters offer increased resolution and improved signal-to-noise ratio performance. Once the audio signal is in the digital domain, one DSP doesn’t vary much from another. Algorithms are written in a similar fashion for filtering, equalization and time alignment.

Why would we want a DSP and not an analog processor? In a DSP, there are no associated concerns about component tolerances or temperature variations that will affect the response of the processing. With the right interface, users can access different system presets quickly and store an unlimited number of configurations on their computers. Most DSP units don’t include any analog adjustments, like potentiometers or switches, which can get dirty or wear out over time. Vibrations that could lead to component failure in an analog system rarely affect DSPs.

Features of Digital Signal Processors

Once an analog signal is converted to digital, the available signal processing is limited only by the software that is written for the chosen unit. The limit on the features of the software is typically determined by the available memory of the processor itself. It takes space to store the program, and additional space to store the converted analog information as the processor works with the information. When you see one processor with more features than another, the difference is usually a memory limitation.

Inputs And Signal Summing

Digital Signal ProcessorsMost DSP units on the market can combine and adjust the level of audio signals on the input to the DSP. If you have a radio with front, rear and subwoofer outputs, you may want to maintain all of these channels discretely as you process the audio signal.

What about when you are trying to integrate with a factory amplifier? Perhaps you have a front door midrange and tweeter output from an amplifier that you need to use for your new front speakers. Most digital signal processors will allow you to combine signals from multiple inputs to facilitate applications like this.

Since different sources have different peak voltage levels, the inputs to your DSP have adjustable sensitivities. Just like the gain control on an amplifier, we want to set the input gains on our DSP to maximize the signal-to-noise ratio of the processor.

Crossovers And Filtering

Digital Signal ProcessorsAs we mentioned, different size speakers are designed to focus their performance within different audio ranges. A 3-inch midrange will not play the same frequency range as a 1-inch tweeter or a 6.5-inch woofer. We use the crossovers in the DSP to divide up the frequencies sent to each output and speaker.

A benefit of doing all the crossover processing in the digital domain is that many digital signal processors offer different crossover filter alignments and roll-off slopes. The alignment describes the shape of the roll-off around the -3 dB point. This shape also affects how signals sum back together acoustically. Options are Butterworth, Linkwitz-Riley, Chebychev, Bessel and more. It’s not that one is better than another, but that each is distinct and different. We could write an entire article about crossover alignments.

The crossover slope describes how fast the audio stops playing as a signal moves away from the crossover point. Because it’s all digital, most digital signal processors offer slopes from -6 dB to -48 dB per octave, in steps of 6 dB or 12 dB, depending on the chosen alignment. In most cases with DSPs, 24 dB/Octave Linkwitz-Riley filtering works quite well, but there are dozens of different tuning approaches, so use what works well for you.

Time Alignment And Signal Delay

One of the coolest features of a digital signal processor is its ability to store the audio signal for a variable amount of time before sending it to the speaker. This storage ability allows a properly trained installer to delay the signal going to the speakers closest to the listener so the sound from created by them arrives at the listening position at the same time as the rest of the speakers. For four-way systems (subwoofer, midbass, midrange and tweeter), this setup and fine-tuning can take a little time.

Equalization

Digital Signal ProcessorsThe ability to fine-tune the frequency response of each speaker in an audio system is a huge key to making that system sound amazing. We have to measure the response of each speaker at the listening position, then adjust the equalizer so each speaker produces a smooth response. There are many ways to achieve this.

Graphic equalizers typically offer 31 bands of equalization per channel and are spaced 1/3 of an octave apart. This spacing usually provides enough frequency resolution to resolve response issues. Graphic equalizers are easy to understand: You pick the desired frequency band, then boost or cut the signal by the amount of your choice.

Parametric equalizers are much more powerful, but can be a little more difficult to configure. In a parametric equalizer, the user can choose the frequency, bandwidth and amount of signal boost or reduction. Understanding the selection of frequency is simple, but understanding filter Q factor is more difficult. When it comes to Q, the basic concept is that a higher number means that the band adjustment affects a narrower range of frequencies. A low number, like 0.7 or 1, covers a wider range of frequencies. Setting up a parametric equalizer accurately takes some practice. That said, some software applications will provide setting information automatically after you measure the frequency response of the speaker or system.

Output Level And Remote Controls

Digital Signal ProcessorsHaving the ability to tune the output level of each speaker finely is critical to the performance of an audio system. To achieve an accurate and balanced soundstage, the amplitude (level) of each speaker in the system must be adjusted very accurately. Output level control is also quite important to matching the efficiency of the different speakers.

Many DSP units have the option of a remote control. These controls can be used to adjust the overall system volume and adjust the subwoofer output level, and can typically load presets for the processor. More advanced controllers give you access to some of the system tuning features, allowing you to make adjustments without the need for a laptop computer. Displays on these remote controls vary from simple single-color dot-matrix LCD panels to full-color OEL displays that are easy to see in bright sunlight.

Digital Signal Processor Tuning – Art Or A Process?

There are many schools of thought about how to configure a DSP. Whether you do it using instrumented measurements or different acoustic techniques, we want to achieve proper protection for the speakers, smooth frequency response from both channels of the audio system and aligned arrival times from each speaker.

Many car audio manufacturers train their dealers in different methods of achieving a great “tune” on their customer vehicles. If you are looking to improve the sound of your mobile entertainment system and already have great speakers and amplifiers, visit your local car audio professional. They would be happy to demonstrate the benefits of DSPs, and provide you with the information you need to make an educated decision about buying one.

This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.

Filed Under: ARTICLES, Car Audio, RESOURCE LIBRARY

  • « Previous Page
  • 1
  • …
  • 28
  • 29
  • 30
  • 31
  • 32
  • …
  • 34
  • Next Page »

Recent Articles

Remote Level Control

Car Audio Amplifier Remote Control Options

June 29, 2025 

If you are thinking about having your local mobile enhancement retailer add a subwoofer amplifier to your car or truck, you may want to ask them about the remote level or bass … [Read More...]

Class AB Amplifier Crossover Distortion

Understanding Specifications: Class AB Car Audio Amplifier Crossover Distortion

June 15, 2025 

We are at our second-to-last article in our car audio amplifier specification series and this time, we are going to talk about Class AB amplifier crossover distortion. This … [Read More...]

Headlights In Traffic

Understanding Replacement Automotive Headlight Bulb Color

June 1, 2025 

Upgrading the headlight bulbs in your car or truck can dramatically improve your safety and the safety of other drivers, pedestrians and cyclists. Your local mobile enhancement … [Read More...]

Amplifier Input Controls

How Does a Car Audio Amplifier Work? – The Input Stage

May 18, 2025 

It’s time to look at the input stage of how a modern car audio amplifier works. The input stage is responsible for interfacing with your radio and provides features like the gain … [Read More...]

Turn-the-volume-up

Why Can’t I Turn the Volume on My Factory Radio All the Way Up?

May 4, 2025 

Whether the sound system in your car or truck is bone stock or upgraded with premium amplifiers, speakers and subwoofers, the system’s maximum volume may not directly coincide with … [Read More...]

Subscribe!

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Join 32 other subscribers

Customer Reviews

Subscribe to Our Website

Enter your email address to subscribe to our website and receive notifications of new posts by email.

Durham Location


Get directions to Auto Acoustics

Services

  • Car Audio
  • Driver Safety
  • Motorcycle Audio
  • Remote Starters
  • Truck Accessories
  • Window Tint

Connect With Us

  • Facebook
  • Instagram

Copyright © 2025 Auto Acoustics · Privacy Policy · Website by 1sixty8 media, inc. · Log in

 

Loading Comments...