
Next, on our look through the common specifications included with modern car audio amplifiers, we want to take a look at amplifier efficiency. With the electrical systems in modern cars shrinking in capacity with every passing year, getting power from your amplifier without taxing the wiring, battery, and alternator in your car is a genuine challenge and concern. Modern Class-D amplifiers have quickly become the standard to drive our speakers. Read on to find out why.
What Is an Amplifier Efficiency Specification?
The efficiency specification of the amp you have chosen will let you know how much of the electricity fed into your amp is converted to an audio signal and how much is wasted as heat. A typical specification would look like 75.1 percent at full power into a 4-ohm load. This information tells us that 75.1 percent of the power going into the amp is converted to audio and that 24.9 percent is used to process the audio signal and is converted to heat.
While comparing maximum power ratings is fun, the music we listen to is quite dynamic and its levels vary a great deal. We set up a pair of amplifiers in our lab and took a series of measurements to graph the efficiency of the amp relative to its power output capabilities.

As you can see, the Class-D amplifier is, more often than not, at least twice as efficient as this particular (very low quality) Class-AB amp. Many reviewers list amplifier efficiency at two levels: full power and 1/3 of rated power. The two amps in this test delivered 23 percent and almost 71 percent efficiency at their 1/3 of maximum power rating. Indeed, you are reading that correctly. The Class-D amp would draw less than 33 percent of the current required to produce the same amount of power as the Class-AB amp. Since we operate our amplifiers in this range most of the time, even with the music quite loud, the effect on the vehicle’s electrical system can be dramatic.


Where Does the Heat Go?
As mentioned, the energy that enters an amp that is not sent to the speakers is converted to heat. To illustrate this effect, we fired up these same two amplifiers and let them run at an output level of about 21 watts for 10 minutes. The thermal images below give you an idea of how they differ.
Where Efficiency Really Matters
In a motorcycle, UTV or side-by-side where the current production capabilities of the factory electrical system are quite limited, choosing an amp with excellent efficiency is significantly more important than, say, in a pickup truck that is equipped with a 180-amp alternator. For these applications, look for an amp that offers the highest efficiency number you can find. Several motorcycle-specific amplifier solutions exceed 90 percent efficiency at full power.
Idle Current Specification
Another specification you will see listed in reviews and some owner’s manuals is idle current. Idle current describes how much current the amplifier draws when it’s turned on but not playing any music. A relatively high or low number doesn’t necessarily mean the amplifier is worth avoiding or is better than another solution. For example, amplifiers with onboard microcontrollers or signal processors consume a little more current than an amp without these devices and subsequent features.
If you drive a vehicle with an adequate electrical system, then considering amplifier efficiency isn’t a huge concern. If you drive a compact to mid-sized car, a hybrid or any kind of type of powersports vehicle, keep an eye on those efficiency ratings. Your local mobile electronics retailer can help you choose a solution that will sound great.
This article is written and produced by the team at www.BestCarAudio.com. Reproduction or use of any kind is prohibited without the express written permission of 1sixty8 media.
As the next topic in our series explaining amplifier specifications, we will look at the frequency response information that manufacturers provide and explain how to interpret this information. In the simplest of statements, the frequency response spec will tell you about the low- and high-frequency limits of the amplifier based on its design. As with all the specs we have looked at, the information provided is as telling as the information that may be missing from the spec page. Let’s dive in and have a look.





For most applications, you can ignore the frequency response measurements of the amplifiers you choose. The majority will be adequately flat from 20 Hz to 20 kHz. If you plan on driving a low-impedance load (low-impedance drivers or many drivers wired in parallel), the added impedance will dramatically reduce the high-frequency performance of a Class-D amp.
The next topic in our look at 

Being able to get full power from your amplifier from a variety of signal sources is important to ensuring that your installer can make that amp work with any source. If you have a high-quality aftermarket source unit, the preamp outputs should provide 2 or 4 Vrms of signal with the volume at maximum and a recording at 0 dB.
When it comes to having a fully active audio system installed in your vehicle, unless you choose to implement a stand-alone
If you have understood this article fully, then you realize that more signal from your
Welcome to our new series about understanding product specifications. Our goal in these articles is to help you understand what the
Without a doubt, the most popular specification that consumers look at when purchasing a car audio amplifier is its power rating. An amplifier takes the small signal from your source unit and increases it in voltage and current to drive a low-impedance speaker. In a nutshell, the more power you have, the more loudly you can play your car stereo system before the signal going to the speakers distorts. The limit of how much power is required is determined by the power handling specifications of the speakers in the vehicle, their cone excursion limits and their 
In layman’s terms, the amp must perform as well producing bass as it does high-frequency information, and the specified power rating cannot include large amounts of distortion. While the 14.4V rating is somewhat high, it establishes a level playing field from which consumers can compare results.
If you don’t see the CTA-2006 logo associated with a product you are considering, there are several ways that the numbers may not be directly comparable with other options. One easy way to inflate numbers is to increase the supply voltage to the amp. Depending on the design of an amplifier’s power supply, each additional volt provided to that power supply could theoretically increase the amplifier’s output by about 0.6 dB. That would be like a 100-watt amp being able to make about 115 watts.
If you are shopping for an amplifier, the power rating does nothing to tell you about the quality of one amplifier compared to another. You don’t need 100 watts to drive your tweeters and you certainly won’t be happy with a 25-watt amp driving a subwoofer in your car.
If you are an avid car audio enthusiast, it’s likely that you’ve seen photos of or heard systems that use high-efficiency pro audio style speakers. These drivers were designed for PA systems at concerts and can produce impressive output levels with moderate levels of power from an amp. In this article, we are going to look at the benefits and drawbacks of using pro-sound speakers in applications like a
Before we dive into the differences between conventional car audio speakers and high-efficiency speakers, let’s take a quick look at the definition of speaker efficiency and what design features change this value.
Several technical design details determine speaker efficiency. One of the biggest factors is the weight of the cone and voice coil assembly. A lightweight cone assembly is easier to move and typically produces more output with less power. The drawback of this low-mass design is that the resonant frequency of the speaker will be higher and the driver won’t produce anywhere as much bass. This is the basic trade-off between conventional car audio speakers and pro-sound drivers.
Let’s compare two popular 6.5-inch woofers, both intended for car audio applications. Speaker A is a conventional 

If you have plans to add a dedicated woofer to the saddlebag or trunk on your bike, and can find one that will play up to 150 or 200 Hz without significant distorting, then pro-style high-efficiency speakers may be a good option if all that matters is how loudly the system will play.